یک روش تک گامی 7-مرحله ای هرمیت-بیرخوف-تیلور از مرتبه ی 11 برای حل عددی معادلات دیفرانسیل معمولی

پایان نامه
چکیده

در این پایان نامه، برای حل عددی مساله ی مقدار اولیه ی ‎$ y^{}=f(x,y)$‎، ‎$ y(x_{0})=y_{0}$‎، روش تک گامی ‎7-‎مرحله ای هرمیت-بیرخوف-تیلور از مرتبه ی ‎11‎ را معرفی می کنیم که برای حل، از چندجمله ای های درونیاب هرمیت-بیرخوف و ‎$ y^{} $‎ تا ‎$ y^{(6)} $‎ استفاده می کند. این روش، ترکیبی از یک روش رانگ-کوتای ‎7-‎مرحله ای صریح از مرتبه ی ‎6‎ با یک روش تیلور از مرتبه ی ‎6‎ است. با متحد قرار دادن بسط جواب عددی به دست آمده از روش با بسط تیلور جواب دقیق تا مرتبه ی ‎11‎، شرایط مرتبه ی روش به دست می آید. با قرار دادن این شرایط در یک دستگاه نوع واندرموند ضرایب روش تعیین می شود. نتایج عددی حاصل‎‎‏، مزیت استفاده از مشتق های بالاتر را در روش رانگ-کوتا نشان می دهد.

۱۵ صفحه ی اول

برای دانلود 15 صفحه اول باید عضویت طلایی داشته باشید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

بهینه سازی روش تجزیه آدومیان برای حل معادلات دیفرانسیل از مرتبه کسری

تاکنون روش تجزیه آدومیان به­طور گسترده­ای برای حل انواع معادلات دیفرانسیل به­کار گرفته شده است. اما در برخی موارد دیده شده است که این روش دقت کمتری نسبت به روش­های دیگر ازجمله روش­های هموتوپی دارد. از آنجایی که این روش، یک روش نسبتاً عمومی و قدرتمند برای یافتن جواب­های تحلیلی-تقریبی از انواع معادلات دیفرانسیل می­باشد، در این مقاله سعی شده با به­کارگیری الگوی استاندارد این روش، یک روش بهینه جدید ...

متن کامل

روش بدون شبکه برای حل عددی معادلات دیفرانسیل از مرتبه کسری

در این مقاله یک تکنیک کلی شناخته شده با عنوان روش بدون شبکه برای حل معادلات دیفرانسیل از مرتبه کسری درنظرگرفته شده است.جواب دقیق را با کمک روش مبتنی بر هم محلی توابع پایه شعاعی مورد تقریب قرار‏ ‎‏می‎دهیم.این تکنیک نقش مهمی که ایفا می کند معادله دیفرانسیل کسری را به یک دستگاه معادلات تقلیل می دهد.نتایج عددی بیانگر دقت وتوانایی این روش است.

متن کامل

حل عددی معادلات دیفرانسیل معمولی کسری با روش گالرکین ناپیوسته موضعی

در این مقاله، روش گالرکین ناپیوسته‌ی موضعی برای حل معادلات دیفرانسیل معمولی با مرتبه‌ی کسری را در حالت کلی به کار می‌بریم.  در این روش انتخاب (طبیعی) شار عددی آپویند، ما را قادر می‌سازد تا مسائل مقدار اولیه برای معادلات کسری معمولی را به صورت بازه به بازه و پیشرو در زمان حل کنیم. این بدین معنی است که ما بایستی در هر زیربازه به حل یک دستگاه معادلات از مرتبه پایین $(k+1)times (k+1)$...

متن کامل

روش هاى چند گامی مستقل از مشتق برای حل عددی معادلات غیر خطی

در این مقاله٬ خانواده­ای از روش­های چند گامی کارا و مستقل از مشتق را برای حل عددی معادلات غیر­خطی بیان می­کنیم. این روش­های چند گامی مبتنی بر چند جمله ­ای درونیاب نیوتن و روش تجزیه آدومیان[1] بهبود یافته می­باشند. مرتبه همگرایی این روش­ها را محاسبه می­کنیم و با استفاده از چند مثال کارایی روش­های چند گامی مستقل از مشتق را  نشان می­دهیم.

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه تبریز - دانشکده علوم پایه

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023